Step of Proof: neg_assert_of_eq_int
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
neg
assert
of
eq
int
:
1.
x
:
2.
y
:
(
(
x
=
y
))
x
y
latex
by ((Unfold `nequal` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
,
t
T
,
P
Q
,
P
Q
,
P
Q
,
a
b
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin